Key Issues for Building Real Time Operational Decision Support Systems

Andre Luis Ogando Paraense1 Ricardo Ribeiro Gudwin1 Rodrigo Almeida Goncalves2

1Department of Computer Engineering and Industrial Automation (DCA)
School of Electrical and Computer Engineering (FEEC)
State University of Campinas (Unicamp)

2CFlex

September 3, 2009
Outline

1. Introduction
2. Key Issues for Building RTODSS as an IAS
3. Case Study: Iron Ore Pellet Stock Yard Management
4. Conclusions and Future Work
Life cycle of a RTODSS

1. Mental models
2. Spreadsheets
3. Transactional System
4. Optimizational System
RTODSS project failures

- When RTODSS leave the spreadsheets
 - Transitions B and D
- Success depends on how well they interact - same ontology
- Failures are caused by conceptual misfits (Blandford et al., 2007)

Conceptual misfit - text messages for groups of people
Approaches to Building RTODSS

- **Until the 1990’s**
 - Focus on how system components should be divided
 - Little attention to the role of the user as an active decision agent

- **In the 2000’s**
 - User is part of the decision process - Cognitive approach
 - Human agents + computational agents

- **Cogsys + CFlex approach**
 - Intelligence augmentation tool for the user

\(^b\) Bhargava et al. (1999), Courtney (2001), Beynon et al. (2002), Shim et al. (2002) and Chen and Lee (2003)
Intelligence Augmentation System (IAS) (Fischer, 2006)

IAS

- Cognitive distributed system (Giere and Moffatt, 2003)
- Success depends on how well the agents interact
Outline

1. Introduction

2. Key Issues for Building RTODSS as an IAS

3. Case Study: Iron Ore Pellet Stock Yard Management

4. Conclusions and Future Work
Growing needs along the evolution of a RTODSS

- Which information need to be gathered and presented by the system?
- Who are the decision agents that communicate with the system?
- How to coordinate the work of many decision agents?
- How to visualize the main decision variables?
- How to suggest alternatives?
- How to forecast future states of the productive system?
- How to optimize solutions?
- How to deal with uncertainty and imprecision in the decision process?
- What is the role of each decision agent in the decision process?
- Which concepts need to be present in the system and/or interface so it will be free of conceptual misfits?
- How to build the human-computer interaction?
Necessary to address the following issues

- Coordination to synchronize the activities of many decision agents;
- Visualization of past and future states (traceability);
- Anticipation of problems (visibility);
- Automation of mechanical tasks;
- Suggestion of alternatives;
- Reflection of the organization culture in the decision process;
- Augmentation of the human capacity of solving problems instead of trying to substitute human decision makers;
- Connectivity to get real time data;
- Interface representing all concepts manipulated by the decision agents in the decision making process;
- Flexible operation, with human insights incorporated in optimized solutions through the system interface;
- System evolution over time policy.
Necessities mapped onto four attributes

Key issues - Build methodology

1. **Ontological interface;**
 - Human-computer interface
 - Common ontology between all decision agents
 - Exosomatic location of mind

2. **Cognitive flow control mechanisms**
 - Interruption: alarms, pop-ups
 - Stimuli: word completion
 - Noninterference

3. **Interfaces with external systems**
 - External computer systems, manual inputs

4. **Evolution mechanisms**
 - Internal and external policies
Outline

1. Introduction
2. Key Issues for Building RTODSS as an IAS
3. Case Study: Iron Ore Pellet Stock Yard Management
4. Conclusions and Future Work
Iron Ore Pellet Stock Yard Management

- Problem: the stack piled for a specific client does not have the appropriate quality
- Solution: reclaiming plan - Blend with other piles
- Which ones should be blended and reclaimed?
Iron Ore Pellet Stock Yard Management

- Problem: the stack piled for a specific client does not have the appropriate quality
- Solution: reclaiming plan - Blend with other piles
- Which ones should be blended and reclaimed?

![Diagram showing iron ore piles with numbers and blocks representing different qualities.]

<table>
<thead>
<tr>
<th>Balizas</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>
Iron Ore Pellet Stock Yard Management

- Problem: the stack piled for a specific client does not have the appropriate quality
- Solution: reclaiming plan - Blend with other piles
- Which ones should be blended and reclaimed?
Exosomatic representation
Applying Methodology - 4 attributes considered

- Corrélle
 - Estado de máquina e corrente representados por cores, posição pelas balizas
 - Deve ser possível inserir anotações livres neste espaço acima das pilhas

- Pilhas selecionadas
 - Pilha X, Pilha Y, ...

- Início formação: DD/MM/AA HH:MM
 - Fim formação: DD/MM/AA HH:MM
 - Cliente:
 - Produto:
 - Quantidade:
 - Qualidade média: (SiO2, H2O, -6.3, etc) (desvio padrão, medidas estatísticas)

- Grupos de balizas selecionados
 - Agrupado, Grupo 1, Grupo 2, ...

- Cliente:
 - Produto:
 - Quantidade:
 - Qualidade média: (SiO2, H2O, -6.3, etc) (desvio padrão, medidas estatísticas)

- Core de produtos
 - PFN-STD
 - PBF-STD

- Moto de entrada
 - Mostra as balizas selecionadas para blendagem
 - Arrasta para selecionar em uma pilha, CTRL para selecionar na outra pilha ou na usina

- Usina
 - A moita de balizas selecionada, mostra na usina, mostra a média para blendagem

- Cargas e orientações de embarque:
 - Carga A, Carga B, ...
 - Qualidade:
 - Orientações de embarque:
 - SiO2, H2O, -6.3, etc

- Obs:
 - Os loci de recuperação são conjuntos de lugares, formando janelas superpostas que atendem ao pedido. Mostra-se a janela mais otimizada. Ao pedido do usuário, mostra-se as outras janelas.
 - Juntamente com os loci de recuperação, deve ser fornecida a informação completa de máquinas, atividades e tempos a serem utilizadas na recuperação. Isso pode ser alcançado clicando com o botão direito do mouse sobre a sugestão de brainware.
 - As companhias não serão representadas diretamente, sendo possível acessá-las através de opções de menu, assim como as outras unidades de conhecimento de representação indireta.
 - A opção de otimizar os planos será através de um menu acessado clicando com o botão direito do mouse, por exemplo.
 - O mapa de qualidade é alcançado com um duplo clique sobre a pilha.
System avoiding Conceptual Misfits
Outline

1. Introduction
2. Key Issues for Building RTODSS as an IAS
3. Case Study: Iron Ore Pellet Stock Yard Management
4. Conclusions and Future Work
Conclusions and Future Work

Conclusion
- A methodology based on the four key issues helped to avoid conceptual misfits

Future work
- Comparison with other similar systems should be done to highlight the advantages of a RTODSS built based on the four attributes
Bibliography

Bibliography

Bibliography

Bibliography